ⓘ Nikolái Lobachevski. Nikolái Ivánovich Lobachevski - en caracteres cirílicos: Никола́й Ива́нович Лобаче́вский nʲikɐˈlaj ɪˈvanəvʲɪtɕ ləbɐˈtɕɛfskʲɪj - fue un mate ..

                                     

ⓘ Nikolái Lobachevski

Nikolái Ivánovich Lobachevski - en caracteres cirílicos: Никола́й Ива́нович Лобаче́вский nʲikɐˈlaj ɪˈvanəvʲɪtɕ ləbɐˈtɕɛfskʲɪj - fue un matemático ruso del siglo XIX.

Entre sus principales logros se encuentra la demostración de varias conjeturas relacionadas con el cálculo tensorial aplicados a vectores en el espacio de Hilbert.

Fue uno de los primeros matemáticos que aplicó un tratamiento crítico a los postulados fundamentales de la geometría euclidiana.

                                     

1. Biografía

Lobachevsky nació en Rusia el 1 de diciembre del año 1792. Estudió en el Gimnasium de Kazán desde 1802 hasta 1807. Con solo 34 años ingresa en la Universidad de Kazán, cursando de 1807 a 1811. Enseñó en dicha Universidad desde 1812, obteniendo el título de catedrático en 1816. Fue elegido en el año 1827 rector de la Universidad de Kazán, siendo un centro modelo de enseñanza superior de aquel tiempo. ​

Murió en Kazán en 1856.

La Universidad Estatal de Nizhni Nóvgorod incluyó en su denominación el nombre de Lobachevski en su honor. En 1896 fue erigido un monumento al eminente sabio en la Universidad de Kazán.

                                     

2. Trabajos

Con independencia del húngaro János Bolyai y del alemán Carl Friedrich Gauss, Lobachevski ideó un sistema de geometría no euclidiana. Antes de Lobachevski, los matemáticos intentaban deducir el quinto postulado de Euclides a partir de los otros axiomas; sin embargo, Lobachevski se dedicó a desarrollar una geometría en la cual el quinto postulado puede no ser cierto o, mejor dicho, ser diferente. Para esto, entre otras cuestiones, propuso un sistema geométrico basado en la hipótesis del ángulo agudo, según la cual, en un plano, por un punto fijo pasan al menos dos paralelas a una recta - en realidad tal solución da noción de la existencia de triángulos curvos -.

Entre sus obras destacan Sobre los principios de la geometría 1829 y Geometría imaginaria 1835.